If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-25x+6=0
a = 8; b = -25; c = +6;
Δ = b2-4ac
Δ = -252-4·8·6
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{433}}{2*8}=\frac{25-\sqrt{433}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{433}}{2*8}=\frac{25+\sqrt{433}}{16} $
| k/8-27=-20 | | 82=2(1-5v) | | 2/z+23=32 | | 13-3a=6(8-5a)-8 | | 3(r-65)=57 | | -3(x+4)=-3x+7 | | 3x-24=4(x-6)-x | | -2x+4-6x=12 | | (17,x+22)-5x+9)=(11x+15)-(22-21x) | | 4+5c=34 | | -n+36=-6(7n-6) | | 8(r-8)=-120 | | 49x=400 | | 2.3=6.3-0.5x | | 56=13-24-x | | d/3+7=4 | | x=13-24-56 | | -7n=140 | | 12x(-5)+1=x | | 5-7x-1=-2x=11 | | 180(n-2)=1440n | | 14=y/4-11 | | 94-p=50 | | 40-13-10=x | | 3x-7=7x-19 | | -4x+12=-4(x-3) | | -204=7(7k-8)-1 | | x/3-2x=4x+60 | | 5*10^z/4=32 | | 5y3−3y2+8y=0 | | 9=49-m | | -2-13x=-8x-(6x+1) |